การแก้สมการกําลังสองโดยวิธีทําเป็นกําลังสองสมบูรณ์

…….ในครวที่แล้วได้กล่าวถึง  การแก้สมการกำลังสองโดยวิธีแยกตัวประกอบ ซึ่งหาได้จากพหุนามที่เราแยกตัวประกอบได้ แต่ในการหาคำตอบของสมการ ax^2+bx+c = 0 เมื่อ a, b, c เป็นค่าคงตัว  และ a \neq 0 นั้น ในบางครั้งไม่สามารถแยกตัวประกอบของพหุนาม  ax^2+bx+c  ได้โดยง่ายดังเช่นที่ผ่านมา ในกรณีเช่นนี้เราอาจใช้ความรู้ในเรื่องกำลังสองสมบูรณ์ มาช่วยในการแก้สมการนี้
…….หลักการแก้สมการกำลังสองโดยวิธีทำให้เป็นกำลังสองสมบูรณ์
…….1. ทำสัมประสิทธิ์ของ ..x^2 ..ให้เป็น.. 1..ก่อน
…….2. จัดให้พจน์อิสระ คือพจน์ที่ไม่มี x อยู่ทางขวามือของเครื่องหมายเท่ากับ
…….3. ให้บวกด้วยกำลังสองของครึ่งหนึ่งของสัมประสิทธิ์ของ x ทั้งสองข้างของเครื่องหมายเท่ากับ
…….4. ทางด้านซ้ายมือของเครื่องหมายเท่ากับให้เขียนเป็นรูปสองพจน์ยกกำลังสอง

ตัวอย่างที่ 1 จงแก้สมการ x^2-6x-1 = 0
วิธีทำ…………………..x^2-6x…..= 1
……………………..x^2-6x+3^2 = 1+9
…………………………..(x-3)^2 = 10
………………………………x-3 = \pm \sqrt{10}
……………………………………x = 3 \pm \sqrt{10}

ตัวอย่างที่ 2 จงแก้สมการ x^2-5x+2 = 0
วิธีทำ…………………..x^2-5x…..= -2
………………….x^2-5x+(\frac{5}{2})^2 = -2+\frac{25}{4}
………………………….(x-\frac{5}{2})^2 = \frac{17}{4}
……………………………..x-\frac{5}{2} = \pm \frac{\sqrt{17}}{2}
…………………………………..x = \frac{5\pm\sqrt{17}}{2}

ตัวอย่างที่ 3 จงแก้สมการ x^2+x+1 = 0
วิธีทำ…………………..x^2+x…..= -1
………………….x^2+x+(\frac{1}{2})^2 = -1 +\frac{1}{4}
…………………………(x+\frac{1}{2})^2 = -\frac{3}{4}
…….เนื่องจาก (x+\frac{1}{2})^2 \geq 0 สำหรับทุกค่าของ x
…….แสดงว่าไม่มีค่า x ที่ทำให้สมการ (x+\frac{1}{2})^2 = -\frac{3}{4} เป็นจริง
……………….นั่นคือ สมการ x^2+x+1 = 0 ไม่มีคำตอบ

ตัวอย่างที่ 4 จงแก้สมการ 3x^2-7x-1 = 0
วิธีทำ…..นำ 3 หารตลอด แล้วย้ายข้าง จัดรูปสมการ จะได้
………………….x^2-\frac{7}{3}x…..= \frac{1}{3}
……………x^2-\frac{7}{3}x+(\frac{7}{6})^2 = \frac{1}{3}+\frac{49}{36}
……………………(x-\frac{7}{6})^2 = \frac{12+49}{36}=\frac{61}{36}
………………………..x-\frac{7}{6} = \pm \frac{\sqrt{61}}{6}
……………………………..x = \frac{7\pm \sqrt{61}}{6}

ตัวอย่างที่ 5 ถ้า  \frac{1+\sqrt{13}}{2}   และ  \frac{1-\sqrt{13}}{2}   เป็นรากของสมการ  ax^2-x+c = 0  เมื่อ    a \neq 0   แล้ว a^2+c^2    มีค่าเท่าใด
วิธีทำใช้กระบวนการคิดย้อนกลับ จากx = \frac{1\pm \sqrt{13}}{2} = \frac{1}{2} \pm \frac{\sqrt{13}}{2}
…………..จะได้เป็น………(x- \frac{1}{2})^2 = \frac{13}{4}
…………………………..x^2-x+\frac{1}{4} = \frac{13}{4}
………………………….x^2-x-3 = 0
…………..เทียบ ส.ป.ส. จะได้a=1, c=-3
………ดังนั้นa^2+c^2 = 1^2+(-3)^2 = 10

ตัวอย่างที่ 6 ถ้าผลคูณของจำนวนนับสองจำนวนเรียงกันเท่ากับ  462   แล้วผลบวกของจำนวนทั้งสองนี้มีค่าเท่าไร
วิธีทำ…….ให้จำนวนที่เรียงกันสองจำนวนเป็น  x และ x+1
……………….จะได้………x(x+1) = 462
………………………x^2+x+(\frac{1}{2})^2 = 462+\frac{1}{4}
……………………………..(x+\frac{1}{2})^2 = \frac{1848+1}{4} = \frac{1849}{4}
…………………………………x+\frac{1}{2} = \pm \frac{43}{2}
……………………………………….x = \frac{-1\pm 43}{2} = \frac{42}{2}, -\frac{44}{2}
……………………………………….x = 21, -22
……………………………………….x = 21
……………ดังนั้น ผลบวกของจำนวนทั้งสอง เป็น 21+22 = 43

หลังจากดูตัวอย่างแล้วเป็นยังไงบ้างครับ เกี่ยวกับการแก้สมการกําลังสองโดยวิธีทําเป็นกําลังสองสมบูรณ์พอจะเข้ากันกันบ้างไหมเอ่ย เพื่อให้เข้าใจยิ่งขึ้น งั้นไปลองดูคลิปกันเลยครับ

Advertisements

Posted on ่12 กันยายน, 2014, in คณิตเพิ่มเติม ม.3 and tagged , . Bookmark the permalink. 1 ความเห็น.

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

%d bloggers like this: